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Executive Summary

This deliverable, produced under WP4, Task 4.3 “Modelling and Forecasting”, presents the modelling
tools developed within FIRE-ADAPT and their benchmarking across Study Hubs. WP4 aims to provide
tools that:

i) support fire management strategies to reduce extreme fire events through prescribed
burning or fuel reduction;

ii) assess changes in fire hazard from these interventions; and

jii) quantify benefits for human infrastructure, health, and ecosystem services, including

carbon emissions mitigation.

We first evaluated existing fire weather indices, which often rely on temperature-driven drought
metrics, limiting their accuracy in complex terrains. To address this, we developed a solar radiation—
driven drought index integrated into a fire weather framework and benchmarked across vegetation
and climate gradients in the France Study Hub (Mediterranean Basin).

Next, we developed abiomass combustion module that incorporates both aboveground and
belowground (soil) combustion, which is typically neglected in Mediterranean and temperate forests.
We leveraged a high-resolution tree height dataset for France and produced a national biomass map,
integrating a soil combustion module that accounts for flaming and smouldering phases. This
provided CO, and CO emission estimates, essential for assessing aerosol impacts on health.

We also benchmarked a national fire hazard model using generalised linear models based on climate,
land cover, road density, and population. Results showed that local calibrations can differ substantially
from global-scale models, highlighting the need for site-specific validation to avoid misrepresenting
future fire risk.

These developments establish a foundation for scenario-based applications under future climate and
land use changes, and for integrating fire management strategies into predictive frameworks.

While focused on the French Study Hub, the methods and tools are transferable to other FIRE-ADAPT
regions. Model parameters include local climate, vegetation, and socio-economic data, this modelling
framework can provide consistent, scalable fire risk forecasting and evaluation of integrated fire
management strategies.
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1 Introduction

This document, which presents and describes the FIRE-ADAPT modelling development and
benchmarking activity, contributes to WP4 and, in particular, to Task 4.3 on model benchmarking. FIRE-
ADAPT modelling activity aims at testing and developing modelling tools able to assess management
strategies on fire hazard and subsequent impacts on integrated socio-ecosystems functioning. We first
focused our modelling objectives on guiding forest managers in assessing fire hazard at their
operational scale, the landscape, where local variations in topoclimates and vegetation functioning
drive fuel moisture as a key driver of fire hazard. The Fire Weather Index (FWI) developed by Canadian
forest services is the most widely used index across biomes to provide alert systems for daily conditions
prone to fire. This index is composed of fire spreading indices related to air relative humidity and wind
speed, and a drought code (DC) initially simulating coarse woody material moisture content, but more
widely used as an index of live fuel moisture content (LFMC) (Ruffault et al. 2018, Pellizaro et al. 2007).
Yet this index is built upon the balance between daily rainfall amount and the climatic
evapotranspiration demand calculated with a temperature-based simple formulation. Acknowledged
as suitable for coarse resolution climate data, its application at the landscape level fails to consider
topographical effects on solar radiation and the subsequent evaporative demand. We assessed here
the suitability of the DC in properly simulating soil water content under Mediterranean conditions,
using the Keetch-Byram Drought Index (KBDI) used in many fire hazard systems and its revised version
developed for Mediterranean conditions (Ganastas et al. 2011). In addition, we developed and
benchmarked a new simple drought model, replacing the temperature-driven drought code with a
solar radiation-driven formulation for landscape-scale applications. We also developed a process-
based LFMC model, accounting for plant functioning. We assume here that contrasted plant water use
strategies can lead to various LFMC seasonality and intensity, and could be used as a management tool
to promote species that better retain moisture within burnable landscapes. Particularly, we
investigated the under-represented role of leaf mass variation along leaf life span from bud burst to
leaf senescence, in piloting the seasonal variation of LFMC, as recently proposed by Brown et al. (2025).
We could develop and benchmark this new approach over Mediterranean woodlands where LFMC and
leaf mass per Area (LMA) have been collected across the season, as a demonstration for further use
and benchmarking in other FIRE-ADAPT Study Hubs and ecosystems.

Fire hazard modelling was then assessed by integrating climate-related drought indices and heat, along
with variables as fuel production through Gross Primary Production (GPP), land cover, landscape
fragmentation through road density, and human population identified at the global scale as a key
driver (Haas et al. 2022). We leveraged a general linear model benchmarked at the global scale to be
applied at the regional scale in continental France, and tested how local benchmarking would better
(or worse) suit local fire hazard and lead to similar or contrasted climate projections. This key question
hypothesises that global benchmarking covers a large range of climate conditions not yet observed at
the local level, so that local benchmarking might not be the most suitable way of performing modelling
scenarios. Finally, we developed a carbon budget impact model over the burned area in the same area
of continental France to assess fire impact. We leveraged new Lidar sensors for tree height assessment
to develop a national scale fine resolution fuel biomass map, and developed a new approach of flaming
and smouldering phases to quantify CO, and CO emissions as a proxy for the emission factor (EF)
guantifying the emission of trace gas and the subsequent air quality, including soil combustion and
smouldering omitted under Mediterranean and temperate conditions.

The document is structured as follows: we first describe and benchmark empirical drought models over
the France Study Hub and Tunisia, with the development of the new process-based modelling
approach for LFMC. We then describe the carbon emission module integrating soil and biomass
smouldering phases compared to available global models GFAS (Kaiser et al. 2012), to finally test and
assess how a global fire hazard model responds to local benchmarking and how this local calibration
might include bias in climate projection due to a reduced climate range not considering future
conditions.

14/10/2025 9
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2 Model developments and Benchmarking

2.1 Fuel moisture content modelling

2.1.1 Empirical models

Empirical drought indices embedded in fire weather indices are widely used as fire hazard forecast or
climate change applications. These indices use daily climate variables to simulate soil moisture based
on the balance between evapo-transpirative demand and rainfall within a standard range of available
soil water capacity (AWC). They assume a standard vegetation and soil field capacity, and potential
evapotranspiration (PET) is mostly derived from air temperature. In turn, they fail to capture
topographical effects on solar radiation thus limiting their landscape scale application for land
management planning, and are potentially biased when highest temperatures don’t necessarily follow
the solar radiation seasonality. We propose here to test the Keetch & Byram index (1968) as a generic
index functionally close to the drought code (DC) of the Canadian Fire Weather Index (FWI, Van Wagner
1974) across vegetation types within the Mediterranean basin, and propose a revised version allowing
for the integration of solar radiation.

2.1.1.1 Study Area

The study area (Figure 1) encompasses three Mediterranean experimental sites. Two are located in
the northern part of the Mediterranean basin (Puéchabon and INRA La Fage sites, southern France)
and one is situated in the southern part of the basin (Souk El Jema, northern Tunisia). All three sites
experience a typical Mediterranean climate characterized by cool, wet winters followed by warm, dry
summers, resulting in seasonal droughts.

The first site, is the Puéchabon experimental site (43°44’30”N, 3°35’40”E, elevation 270 m, France),
north of Montpellier, Occitanie Region, France, an evergreen Mediterranean-type forest largely
dominated by holm oak (Quercus ilex), which represents more than 90% of the tree cover. The site is
characterized by a rocky soil with low soil water reserve (approx. 140 mm), leading to severe and
recurrent summer water stress for the vegetation. The Puéchabon site has a mean annual rainfall of
916 mm/year, mainly occurring between September and April (Rambal et al. 2014).

The second site, is a dry calcareous rangeland located on a limestone plateau (Larzac Causse) at the
INRA La Fage experimental station (43°55’N, 3°05’E, elevation 790 m, France), northwest of
Montpellier. The site is largely dominated by perennial herbaceous species along with loosely
scattered shrubs distributed along a gradient of soil water storage capacity (ranging from 20 to 120
mm). Climate is subhumid with a strong Mediterranean influence. The long-term mean annual
precipitation ranges from 680 to 1790 mm, occurring mainly during autumn and early spring (Barkaoui
et al., 2017).

The third site, Souk El Jema (36°605’N, 8°566’E, elevation 529 m, northern Tunisia), is covered by mixed
Mediterranean shrublands. Soil is 1 m deep before reaching the non-fractured sandstone mother rock.
It is a sandy clay soil with a low proportion of rock. The site has a mean annual rainfall of 750 mm/year,
with high inter-annual variability, with 2 or 3 months of summer drought (Longepierre et al., 2014).

14/10/2025 10
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Figure 1. Locations of the selected study sites within the Mediterranean basin

2.1.1.2 Meteorological data and local calibrated soil water balance models

Each of our selected study sites are equipped with a fully automated meteorological station that
measures daily precipitation, temperature, solar radiation, air humidity, and wind speed. These
valuable data are readily available. The meteorological data acquired from the Puéchabon site spans
39 years (1984-2022), while INRA-La Fage data spans 7 years (2016-2022) and the Tunisian site has a
complete measurement for only two years (2012-2013). From these data, we computed the original
KBDI referred to as KBDI-1968 (Keetch & Byram, 1968), the Mediterranean-modified version hereafter
Med-KBDI (Ganatsas et al., 2011), and lastly, our proposed KBDI-Priestley-Taylor, further referenced
as PT-KBDI.

For both sites in southern France, dedicated soil water balance models have been calibrated and used
to simulate the soil AWC under local meteorological conditions. The water-balance from SIERRA
(Simulator for meditERRanean landscApes) process-based vegetation model (Mouillot et al. 2001) was
employed for simulating variations in SWC at the Puéchabon site. The INRA-La Fage site utilizes the
water-balance model developed by Barkaoui et al (2017). Both models were calibrated upon soil
moisture sensors. For the Tunisian site, observations on soil moisture dynamics, more particularly,
volumetric soil water content (%), are directly obtained through automated probes measurements
installed at different soil depths, using three automated probes at depths of 0-5 cm (5HS Decagon
Device, L1), 5-15 cm (10 HS Decagon Device, L2), and 15-45 cm (Campbell CS616, L3), covering a total
soil profile of 45 cm. The combined measurements from these depths indicate a total soil water reserve
of 110 mm (Longepierre et al., 2014).

14/10/2025 11
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2.1.1.3 Background on the Keetch-Byram Drought Index (KBDI)

This study concentrates on KBDI originally developed in southeastern United States (Florida state) to
assess the potential for forest fires through monitoring changes in the soil water content (upper soil
and the covering layer of duff) based on a simple bookkeeping procedure. Today, it remains inherent
part of well-established fire danger rating systems, such as the McArthur Forest Fire Danger Index, the
Fosberg fire weather index, and the NFDRS (Dowdy et al., 2009; Holgate et al., 2017; Krueger et al.,
2022; Snyder et al.,, 2006). lts calculation requires few meteorological data: daily maximum
temperature (Tmax), daily precipitation (P), and the mean annual rainfall data (MAR) (Keetch & Byram,
1968).

The index operates under the assumption of a simplified water balance equation. In this model,
effective rainfall (Peff) constitutes the water input to the soil water balance. This effective rainfall
represents the actual water reaching and infiltrating the soil after interception by the upper vegetation
layer (Eq. 1). Consequently, effective rainfall is calculated by subtracting 5 mm from any daily rainfall
amount, if there is any rain exceeding 5 mm (i.e., P less than 5 mm are not enough to increase soil
moisture on the calculation of KBDI). The drought increment on each day (time increment or dt = one
day), called drought factor (dQ), representing changes in SWC, is determined by the mean annual
rainfall of the area and serves as a proxy for leaf area controlling the actual transpirative demand, a
value of accumulated water depletion (Qt), and the maximum temperature of the day (Eq. 2). Qt
represents the accumulated soil water depletion (mm) calculated as the KBDI from the previous day
(KBDIt-1) minus today’s effective rainfall (Eq. 3). Following this bookkeeping calculation, on each day a
KBDIt value is computed by adding the change in drought factor, that reflects the daily change in
dryness index (dQ), to the daily depletion of soil moisture (Eq. 4). Accordingly, KBDIt decreases with
Peff and increases with daily evapotranspiration (i.e., when no rain occurs). The empirical potential
evapotranspiration (PET) formulas for daily KBDI calculation are presented in equation 5 as the ratio
of an exponential function of Tmax, divided by an exponential function of the MAR (mm/day). This PET
equation is converted to actual evapotranspiration as a linear function of soil water depletion as
presented in Equation 2. All equations below are presented in international units following Crane
(1982):

Peff= max(0, Pt-5) (1)

0.0875Tmax+1.5552

10_3(203.2—QE)(0.9689

do =
Q 1+10.88¢ " O01736MAR

8.3)dt

(2)

Q.= (KBDIr—l) - Peff a)

KBDI = + d
t Qt Q (4)

(0 9688(0.08?5Tmax+1.5552) _

1+10.88e

8.3)
(—0.001736MAR)

PET =

(5)

As initially conceived, the index assumes an arbitrary soil depth and a type of soil, such that the lower
limit represents the storage at Field Capacity (FC), which is 203 mm or 8 inches of water, and the upper
limit is the Permanent Wilting Point (PWP), with the difference being the available soil water content
(Hausler et al., 2019). Accordingly, the KBDI is expressed as a scale from 0 as the point of no moisture
depletion (i.e., soil at field capacity) to 203 as the maximum drought condition (or higher fire risk)
representing soil conditions at wilting point.
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In addition, the development of the KBDI index relies on a set of underlying physical assumptions. For
instance, as presented in Eq. 2, the rate of moisture loss due to evapotranspiration is a function of the
density of the vegetation cover, which itself is a function of mean annual rainfall (i.e., wetter sites
support more vegetation). The evapotranspiration rate is also considered as an exponential function
of the daily maximum temperature (Eq. 5). In addition, no distinction was made between interception
and runoff processes and is approximated as the first 5 mm of rainfall (Eq. 1), although processes such
as deep drainage or spatiotemporal changes to infiltration are not considered. In addition, variables
known to influence PET, such as other meteorological conditions (e.g., wind speed, solar radiation,
latent heat exchanges), vegetation characteristics, are not accounted for in the KBDI calculation.

A modified KBDI (Eq. 6) was proposed by Ganatsas et al (2011), by adapting the variables of Tmax, and
the MAR to adjust KBDI to Mediterranean conditions. This entails adjusting KBDIt calculations to also
account for a reduction from 5 mm to 3 mm when computing effective rainfall (Peff). Although, a value
of 200mm for the soil field capacity has been adopted instead of 203.2mm.

10 °(200-Q)(1.713¢" " TP _14.59)dt

do =
Q 1+10.88¢ "001736MAR

(6)

2.1.1.4 Development of the Priestley-Taylor KBDI

The newly proposed Priestley-Taylor KBDI (PT-KBDI) presents a revised set of underlying assumptions
that depart from those previously mentioned. Drawing upon earlier functional soil water balance
models, such as those proposed by Mouillot et al (2001), the PT-KBDI relies on the following new
assumptions: (1) solar radiation is key driver of evapotranspiration, (2) incoming water fluxes that
replenish the soil water reservoir encompass the fraction of precipitation that infiltrates the soil after
canopy interception has been accounted for, (3) Leaf Area Index (LAIl) is derived from actual
measurements.

Accordingly, AET is a function of Priestly-Taylor PET (in mm/day), modulated by the site LAl (m?2/m?),
and available soil water content (Mouillot et al., 2001).

b

—R*LAI) " TAWC—- KBDIt_

AET = PET * (1 — exp — L)

(7)
PET is computed using the Priestly-Taylor (PT) equation (Priestley & Taylor, 1972, Eq.8).

o (Rn—G)A
A +y

PT — PET (mm/day) =
(8)

Where a is an empirical constant accounting for the vapor pressure deficit and resistance values.
Typically, a is 1.26 for open bodies of water, but has a wide range of values from less than 1 (humid
conditions) to almost 2 (arid conditions), Rn is the net radiation expressed in MJ/m?/day, G is the soil
heat flux at the soil surface in MJ/m?/day, A is the slope of the saturation vapor-pressure curve
expressed in kPa/°C, y is the psychometric constant expressed in kPa/°C.
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The second term in Eq. 7 accounts for the effect of vegetation cover on evapotranspiration rates. More
particularly, it represents the fraction of incident light transmitted through a canopy known as fAPAR
(fraction of Absorbed Photosynthetically Active Radiation), estimated from LAl following the Beer-
Lambert light extinction law. ‘K’ is the extinction coefficient measuring the canopy radiation
attenuation. When no other data is available, most applications assume that leaves are randomly
distributed in the horizontal plane throughout the canopy, and this factor is estimated to be equal to
0.5 (Coops et al., 2004). Besides, as a first approximation under typical Mediterranean conditions, we
have set LAl to a maximum of 2 m2/m? (Longepierre et al., 2014).

The third term in Eq. 7 represents the non-linear relationship between soil water content and plant
functioning. More particularly, it simulates the stomatal conductance in relation to the available soil
water content using the power function model of a retention curve, where ‘b’ is the retention curve
parameter (Saxton & Rawls, 2006). Across all simulations, the parameter 'b' has been fixed at a value
of 0.85. AWC represents the value of total soil water content (mm) at each site.

Complementing the revised daily Actual EvapoTranspiration (AET) calculation (asin Eq. 7), an extended
effective rainfall computation has been implemented to replenish soil moisture (Peff, Eq. 1). Building
upon the earlier works of Mouillot et al (2001), this enhanced approach incorporates a water
infiltration function within the surface soil layers after canopy interception has been accounted for, as
described in Eq. 9:

2

— _ S
P eff 0, 0.25 +§ max(0, P—fn)+0.85)

(9)

Where (S) represent soil daily maximum potential retention (mm), (In) represents the interception by
the canopy (mm), and (P) represents the daily amount of precipitation (mm). We have set S equal to
70.

2.1.1.5 Performance evaluation of the different KBDI formulations across the three
Mediterranean sites

Figure 2 presents a daily time series of the three KBDI formulations (PT-KBDI, Med-KBDI, and KBDI-
1968) simulated for various soil depths at each study site. These simulations are compared with the
corresponding specific site-collected water balances, which will serve as the ground-truth observations
for validation. We observe that the newly proposed PT-KBDI (orange lines) effectively reproduces and
captures the dynamics observed in both the well-calibrated, site-specific water balance (at Puéchabon
and INRA La Fage sites) and the directly measured one (Souk El Jema, Tunisian site). Notably, the Med-
KBDI version (red lines) exhibits a slight tendency to underestimate actual soil moisture depletion
during the summer and early fall periods relative to both the PT-KBDI formulation and the reference
water balances. This underestimation trend becomes even more pronounced with the original KBDI-
1968 (green lines) at the three sites under typical Mediterranean conditions, featuring a single seasonal
drought.

However, a substantial divergence in seasonal trends of soil water depletion (mm of water deficit)
emerges between the original KBDI-1968 and its Mediterranean modification version. Notably, across
all three investigated sites, the Med-KBDI formulation exhibits higher values from early June onwards,
until reaching the peak driest days. We observe that the PT-KBDI captures the earlier onsets of soil
moisture depletion during late winter/early spring (March-April) compared to the delayed starts (May-
June) observed in the temperature-based formulations (Med-KBDI and the original KBDI-1968). This
finding highlights the benefits of the Priestley-Taylor approach in capturing the initial stages of soil
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moisture loss, and accordingly more representative and reliable fire potential estimation at the three
experimental sites featuring typical Mediterranean conditions.

Puechabon Site (France)
SWB Models
100 KBDI-1968
— Med-KBDI

Priestly-Taylor KBDI

___ SIERRA Model
0 (Mouillot et al. 2001)

1984 1985 1986 1987

KBDI

INRA La Fage Site (France)

100

Fage Simulated Soil
Water Balance
(Barkaoui et al. 2017)

KBDI

Soil Moisture Content
derived from probe

60 measurements
(Longepierre et al. 2014)

KBDI

0 s LA LA A
2012-01 2012-07 2013-01 2013-07 2014-01

Date

Figure 2: Daily time course of drought indices KBDI in its initial version (KBDI-1968), modified version for
Mediterranean bioclimate (Med-KBDI) and the newly developed PT-KBDI using the Priestley-Taylor potential
evapotranspiration, for each study site Puéchabon (Quercus ilex, France), INRA La Fage (grassland, France) and
Souk el Jema (shrubland, Tunisia).

To comprehensively elucidate the behaviour of the three calculated KBDI formulations, Figure 3
presents the calculated Mean Absolute Error (MAE) and Euclidean Distance (ED) at each site between
each of the three KBDI formulations and the reference ground-truth water balances. The MAE between
PT-KBDI and reference water balances was lower (ranging from 9 to 12) compared to both the Med-
KBDI (ranging from 11 to 19) and the original KBDI-1968 formulation (ranging from 15 to 30) at all three
sites (Puéchabon, Inra la Fage, and Souk El Jema, respectively). This finding aligns with the calculated
ED values, which showed the highest similarity in time series shapes between PT-KBDI and the
reference water balances (ranging from 1404 to 435) compared to the Med-KBDI (ranging from 3061
to 749) and the original KBDI derivation (ranging from 4654 to 933) at all three sites (Puéchabon, Inra
la Fage, and Souk El Jema, respectively).

Our analysis suggests that the newly introduced PT-KBDI formulation improved the soil water balance
estimates. In contrast, the temperature-based KBDI formulation tends to underestimate actual soil
moisture loss.
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Figure 3: Mean Absolute Error (MAE) and Euclidian distance (ED) between each of the three simulated KBDI
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formulations and the measureed soil water balances across the three experimental sites Puéchabon (Quercus
ilex, France), INRA-LaFage (Grassland, France) and Souk el Jema (Shrubland, Tunisia).
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2.1.2 Process-based LFMC modelling (IRD-CEFE)

Empirical drought indices as KBDI previously tested are able to reproduce soil water content or LFMC
(Pellizaro et al. 2007) during the dry season. Yet they are poorly related to interspecific water use
strategies (Ruffault et al. 2018), preventing management strategies targeting the clearing of the most
flammable plant species. Process-based modelling of LFMC appears as a more efficient tool, translating
soil water content into plant water potential, and further into LFMC through pressure volume curves
(Ruffault et al. 2023). Yet, Leaf mass per Area (LMA) is assumed to be constant across the season
although LMA variations across species, across climate gradients and along the season might
significantly affect LFMC (Nolan et al. 2022). As LFMC is both a function of leaf water content relative
to leaf mass, any seasonal dynamic in this leaf mass might affect LFMC even under constant leaf water
content. Based on FIRE-ADAPT Deliverable 4.2 where LFMC and LMA seasonality have been collected
we developed and benchmarked a process-based modelling framework.

2.1.2.1 Model description
We relied on the LFMC equation from Brown et al. (2025) (eq 10):

RWC

LEMC (%) = —190 =% _ 100
LMA x SAV

(10)

With LFMC is live fuel moisture content (gH20/gC), RWC is relative water content (gH20/gH20sat),
LMA is leaf mass per area (gC/m2), and SAV is surface area to volume ratio (m2/m3) and K is a scaling
parameter that represents the maximum amount of water that a sample can expand to hold at
saturation.

We simplified this equation with equation 11:

LFMC= (1/LDMC -1) * RWC = f(LMA) * RWC (11)

With LDMC being the leaf dry matter content (gC/gH,0sat) and being a function of LMA (Garnier et al.
2001), with LMA varying across the season from budburst to senescence.

We simulated LMA variations at the canopy scale by integrating LMA dynamics from budburst to leaf
maturation time for the yearly leaf cohorts, and leaf cohorts replacement according to leaf life span.
Budburst timing was calculated from cumulated temperature and LMA with cumulated photosynthetic
active radiation (Davi et al. 2008). Leaf senescence and litterfall was assumed to follow a uniform
pattern along the year according to leaf life span with 50% being lost during the leaf replacement
period between budburst and leaf maturity for evergreen species, or a total leaf litterfall in autumn
for deciduous species. Canopy Live Fuel Moisture Content (CLFMC) then represents the LFMC of young
(NO) and old leaves (N1).

We tested the model on Quercus ilex evergreen mediterranean species, with a leaf life span of two
years.

2.1.2.2 Results

Figure 4 represents the seasonal time course of the young leaf NO cohort fraction, and the old leaves
N-1 cohort fraction. NO has a value of 0 before budburst, rapidly increasing to 1 after the leaf unfolding
period. N-11 follows a decreasing trend, with a regular slope in winter, and a 50% decrease between
budburst and the end of leaf unfolding. In turn, the fraction of young leaves NO at the canopy level,
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rapidly increases until the end of the leaf unfolding period, and progressively increases when old leaves
N-1 continue to fall.

—
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Figure 4: Theoretical seasonal dynamic of leaf cohort fractions (NO, leaves of the year in green, and N-1: leaves
of the previous year in red) along the year (X axis). The black line represents the fraction of NO leaves in the
whole canopy.

When simulating LFMC at the canopy level (Figure 5), we could observe the intrinsic seasonal variation
of LFMC (maximum LFMC) due to LMA variation only, peaking at LFMC=180% during the leaf unfolding
period and decreasing to 120% along NO leaf maturation. Similarly, the minimum LFMC calculations
(LFMC when RWC is close to the wilting point), follow the same seasonal pattern. When performing a
simulation with varying RWC along the season and thus representing actual LMFC at the canopy level,
we could simulate the rapid LFMC decrease early in the season, resulting from both LMA increase and
RWC decrease, then reaching the wilting point curve at the end of the dry season. Yet, we observe that
LFMC at the end of the dry season, even after rainfall, cannot reach LFMC values observed at the
beginning of the season due to higher LMA values. This seasonal trend is in accordance with
observations made on Quercus ilex field measurements (dots) for which LFMC hardly increased from
70% at the end of the dry season to only 110% after Autumnal rainfalls.
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Figure 5: Seasonal daily time course (X axis: day of the year) of canopy Live Fuel Moisture Content (LFMC, light

blue) for Quercus ilex at the Puéchabon (France) study hub, constrained between maximum LFMC (dark blue)

when leaf relative water content is at maximum but LMA varies and minimum LFMC (brown line) when RWC is
at wilting point.

2.1.2.3 Perspectives

We delivered this model as an Rcran code, using a table for model-specific attributes and daily climatic
variables (Precipitation, temperature, solar radiation) and tested over the evergreen Oak Quercus ilex
in Mediterranean France, with a leaf life span of 2 years. The model should be further benchmarked in
other vegetation types, including the tropics, and future directions should include the dead leaf
material moisture content for leaves remaining on the canopy after die off. We assumed in the first of
the model that dead leaves directly fall to the litter, which might not be true for some species and
significantly decreases their canopy fuel moisture content.
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2.2 Fire emissions

Integrated Fire Management (IFM) strategies in FIRE-ADAPT aim to support landscape-level
management plans, including forest management practices such as prescribed burning, to reduce the
occurrence of large fires. For these management plans to gain social acceptance, it is essential to assess
their impact on the forest carbon budget and fire-related emissions. Conventional global models
estimate carbon loss and atmospheric emissions during fires based on burned area, available biomass,
and combustion efficiency, with implications for air quality. However, these models are developed at
coarse resolutions (500 m at best, e.g., GFED5, Van Wees et al., 2022), which may limit their
applicability when evaluating IFM at landscape or regional scales. Recent advances in satellite
LiDAR provide globally available, high-resolution (=10 m) data that can significantly improve estimates
of forest biomass exposed to fire (Schwartz et al., 2023) and refine the assessment of IFM impacts.
Building on this, we developed a fine-resolution biomass map and a novel combustion model that
captures both flaming and smouldering phases, including soil combustion, which is often neglected in
temperate and Mediterranean forests. This framework allows for a more accurate quantification of
fire emissions and the effectiveness of IFM strategies.

2.2.1 Study Area

This study focuses on mainland France (41-52° N, 5° W—10° E). To facilitate data analysis, we divided
the national territory into four regions based on forest communities and fire occurrence (Figure 6):

| Temperate forest|

[Atlantic Pine|
forest

Figure 6: Map of the 19 forest classes in France. The classification is separated into Broadleaf and Needle leaf
and based on the National Forest Inventory. The resolution of the initial data is 10m. For better visualization,
the data were resampled to 500m resolution and represent the dominant forest class. The French map and the
snapshot showing France within the European continent follow the WGS84 projection.

2.2.2 Material and Method

2.2.2.1 Forest stem and branch pool

Within the Above Ground carbon Stock (AGS) affected by fires, the stem and branch pools are
prominent components. We used the remote sensing biomass dataset over France as provided in D4.2
of the FIRE-ADAPT project. This method is based on two high-resolution data sources: firstly, a 10 m
resolution mapping of vegetation height obtained from GEDI, Sentinel-1, and Sentinel-2 satellite
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images from 2020 (Schwartz et al., 2023); secondly, data indicative of forest communities and
individual descriptors, sourced from the French National Forest Inventory (NFI) since 2005
(https://inventaire-forestier.ign.fr/, last access: 9 October 2023). We relied on the spatial classification
of forest into 19 forest classes (FC) (IGN, 2018) (Figure 7) categorized by the national forest inventory,
taxonomically more or less precise. FC can indeed correspond to one species (maritime pine, chestnut,
poplar, ...), two species (fir & spruce, Laricio pine & black pine), a genus or part of a genus (pine,
deciduous oak, evergreen oak), a phylum (conifer, deciduous) or a broader classification (mixed forest).
We finally hypothesized that deciduous branches accounted for 39 % of the aboveground biomass,
while coniferous branches contributed 25 % (Loustau, 2010).

2.2.2.2. Shrub, grass, and litter pools

To account for the effects of the AGS on non-forest pixels (where the height is less than 3 m), we
applied a fixed biomass (dry weight) density value of 10 tDM.ha™ for shrubland vegetation and 4
tDM.ha™* for herbaceous vegetation (Vallet et al., 2023). These values are in agreement with the stocks
included in the FINN carbon emission model (Wiedinmyer et al., 2023). Pixels were classified as
containing shrubland vegetation based on the presence of sclerophyllous vegetation in the CORINE
Land Cover (CLC) database (EEA, 2019), along with a recorded vegetation height below 3 m. Pixels not
classified as forest or shrubland were regarded as grassland. The litter pool was also incorporated into
the AGS. It was derived from the GFED5 dataset, available at a resolution of 500 m by Van Wees et al.
(2022). We resampled these fine litter data to a 10 m resolution using the nearest-neighbour method.

2.2.2.3 Forest and shrubland leaf pool

The leaf pool, representing the fraction of vegetation most completely consumed during combustion,
was quantified based on a combination of satellite data and in situ measurements of leaf traits. Leaf
area index (LAI) data at a resolution of 300 m were derived from the Sentinel-3 LAl product provided
by the Copernicus service (Verger et al., 2014). These data were compiled over the summer period of
2022 (June to September), and the average of the non-zero values for each pixel was extracted. Specific
leaf area (SLA; in m2. kgDM™1) was obtained at a resolution of 500 m from the TRY database (Moreno-
Martinez et al., 2018). To calculate leaf mass, we initially conducted a nearest-neighbour resampling
of LAl and SLA maps at 10 m resolution. Subsequently, the leaf pool density (kgDM.m=2) was
determined by dividing the LAl values (m2.m™2) by the SLA values (m2.kgDM™1) for each pixel. Only pixels
categorised as forest or shrubland (height> 3 m) were included in this leaf pool dataset. Consequently,
the AGS is then composed of six pools:stem, branch, leaf, shrub, grass, and litter.

2.2.2.4 Soil organic matter (SOM) pool

The soil organic matter (SOM) is encompassed within the BelowGround Stock (BGS). Data for this pool
were sourced from the European Soil Data Centre (ESDAC) (Yigini and Panagos, 2016), offering carbon
density values (tC.ha™) for the top 20 cm of soil at a resolution of 1000 m. To determine the pool of
soil organic matter within each burned pixel, we converted these carbon values into organic matter,
assuming a carbon content of 0.5 (Pribyl, 2010). These data were then resampled at 10 m resolution
using the nearest-neighbour approach.

2.2.2.5 Other belowground pools: peatland and lignite

To investigate the sources of smouldering combustion and pyrolysis, we considered two additional
pools within the BelowGround carbon Stock. Marshland areas, particularly peatland, can potentially
contain huge amounts of organic matter, which is often assumed to be insignificant in temperate forest
fire emissions. During the summer, waterlogged areas can become vulnerable to fire as they dry out.
To account for peatland areas, we relied on the CORINE Land Cover (CLC) database (EEA, 2019). We
established a fixed characterisation of the peatland, assuming a depth of 2 m and a mass density of
145 kgDM.m™3, as measured in France (Pilloix, 2019). We then calculated the pool mass for any point
within the CLC polygon by multiplying the pixel area (~ 100 m?) by the depth and biomass density.
Lignite is a distinctive pool within the BGS found in the Landes, arising from a slow decomposition
process. Historically, lignite has been utilised as an energy source in the Landes, near the city of
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Hostens, for its high concentration of carbon. Firefighters in this area reported high soil temperatures
near the ancient mines. The lignite layer is near the surface and located beneath the organic soil. The
location of the lignite area was provided by APPHIM (Apphim, 2023) around the Hostens village. The
lignite mine typically has a depth ranging from 2 to 5 m, extending to 10-15 m.

For our analysis, we assumed a fixed depth of 2 m (http://www.geocaching.com/, last access: 25 July
2023). The bulk density of brown coal is generally around 700 kgDM.m™3 (Kopp, 2024). Accordingly, the
density of the lignite pool was set at 1400 kgDM.m=2 of burned surface. This particular pool of carbon
was affected by two large fires during the 2022 fire season. Thus, the BGS encompasses three pools:
soil organic matter (SOM), peat, and lignite

2.2.2.6. Carbon emissions

We estimated CO2 and CO emissions arising from two combustion phases, namely flaming (F) and
smouldering (S). This quantification was computed for each of the AGS (stem, branch, leaf, shrub,
grass, and litter) and BGS (SOM, peat, and lignite) pools. Emission assessment was facilitated by
accounting for two crucial factors: the combustion completeness (CC), denoting the proportion of the
pool altered by combustion, and emission factors (EFs; in g.kgDM2) for CO;, and CO. For each individual
pixel within the fire patch (p), each specific pool (P ) (Table 2), and each gas (x), we calculated emission
(E) using the following equation 12:

Epy =Mp -CCp - (SFp - -EFpys + (1 —SFp) -EFpy). )
— Epx: emission of gas x from pool P (g)
— Mp: dry mass of pool P (kg DM)
— CCp : combustion completeness of pool P (percentage of available pool)
— SFp: smoldering fraction of pool P (percentage of combusted pool in smoldering phase)

— EFpxsand EFp 4 : emission factors for pool P into gas x during the smoldering (s) and flaming (f ) phases
(g kg-1 DM)

To calculate the emissions of gas x (Figure 7, “Emission”) from all pools (n pools P) within each burned
pixel (p), we utilized the following equation 13:

n
Epr=) ., Epy.

Consequently, we were able to obtain an aggregated emission value for gas x encompassing the entire
fire (A) comprising m individual pixels p, as specified in Eq. (14):

(13)

m
EAx - _lpr.
p_
(14)

Table 1 provides a comprehensive summary of CC, EF, and SF for each pool, drawing from a
bibliographical review of available data from global fire emission models, such as GFED (Van Wees et
al., 2022) and FINN (Wiedinmyer et al.,2023), along with empirical field measurements conducted in
temperate forests. Notably, in the absence of specific data synthesis for Europe, the fraction of
smouldering combustion for each pool was inferred from data collected in American temperate forests
(Prichard et al., 2020). We provide a range of values for combustion completeness (CCmin and CCmax).
The estimated values for combustion matter (M), emission (E), and MCE correspond to the average
between the minimum and maximum estimates. The uncertainty ranges correspond to the deviation
between this mean value and the limit value (minimum or maximum value having the same deviation
from the mean).
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Stock and pools CC SF EF MC  References
(g of gas per kg of DM pool) Ei
Min  Max COy | Cco
F S| F S

Aboveground stock (AGS)

Stem 0.10 050 040 1700 1400 | 73 165 0.935 Van Wees et al. (2022), Prichard et al. (2020),
Balde et al. (2023), Akagi et al. (2011)

Branch 0.90 1.00 0.00 1686 | 63 0.964  Van Wees et al. (2022), Prichard et al. (2020)

Leaf 0.90 1.00 0.00 1686 | 63 0.964  Van Wees et al. (2022), Prichard et al. (2020)

Shrub 0.40 099 040 1746 1460 | 72 93 0953 Van Wees et al. (2022), Prichard et al. (2020),
Akagi et al. (2011), Garcia-Hurtado et al.
(2013)

Grass 0.90 1.00 0.00 1686 | 63 0.964  Van Wees et al. (2022), Prichard et al. (2020)

Litter 0.80 1.00  0.10 1696 1750 | 64 119 0.961 Van Wees et al. (2022), Prichard et al. (2020)

Belowground stock (BGS)

SOM 0.10 0.50 090 1696 1000 | 64 298 0.796  Van Wees et al. (2022), Prichard et al. (2020)

Peat 0.05 0.20 090 169 1000 | 64 298 0.796  Van Wees et al. (2022), Prichard et al. (2020),
Akagi et al. (2011), Rein et al. (2009), Geron
and Hays (2013)

Lignite 0.01 0.025 1.00 1500 | 750 0.666 Song et al. (2020)

Table 1. Synthesis table of parameters used in the refined fire emission model. Minimum and maximum
combustion completeness (CC), smouldering fraction (SF) and emission factor (EF) for the smouldering (S) and
flaming (F) combustions to CO and CO2 are based on previously reported values in the carbon emission
scientific literature. Intrinsic MCE values (MCEi) calculated from Eq. (2) are also provided.

We set up three distinctive stages in the fire propagation:

1. The spreading stage (SS), where the AGS constitutes the entire combustion. A total of 50 % of the
AGS is affected during this phase.

2. The mixed stage (MS), characterized by ongoing aboveground flaming at the fire front while
smouldering combustion consumes the wood residual and BGS over the previously burned area. This
stage involves 50 % of the AGS and 25 % of the BGS.

3. The post-spreading stage (PSS), devoid of flaming but marked by continuing smouldering in the soil
and wood residuals, representing the totality of emissions. Altogether, 75 % of the BGS is impacted
during the post-spreading stage.

The splitting of the BGS smouldering at 75 % during the post-spreading stage and 25 % during the
mixed stage relies on the flaming duration of 10 d for the BIS fire and with an extended 15 d (to be
conservative) after the spreading. The mixed stage lasted 5 d, representing 25 % of the smouldering
period lasting these 5 d plus the 15 d after the spreading (20 d of smouldering duration). This is a
conservative value, as smouldering lasts for longer but with much less intensity. Figure 7 synthesizes
the produced fire emission model.
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Smouldering Fraction

E=S . D, B . CC . (EFS,SF+EFF;.(1-SF))

Combustion Emission Factor
Completenes. gX.kgDM-1

Prichard et al. 2020

Figure 7: Revised emission equation (E), based on burned area, biomass available in leaf, wood and soil carbon
pools, their combustion completeness and emission factors within each flaming and smouldering phases.

For comparison, we utilized the Global Fire Assimilation System dataset for fire emissions (Kaiser et al.,
2012). This dataset is the only one to offer near-real-time coverage extending to 2022, generating daily
emissions based on MODIS MCD thermal “hotspot” anomalies and the biome-specific combustion rate
(in kgDM.MJ™2). GFAS delivers information at a 0.1° resolution, covering burned dry matter, fire
emissions, and injection height on a daily basis since 2003, with near-real-time updates. We accessed
GFAS data for CO, and CO emissions for the period spanning June to September 2022, considering the
entire dataset within this time frame for our analysis.

2.2.3 Results

Region Bumed  Stock Stock Matter Emission MCE GFAS
area type (MtDM) combusted (Mt) emission
(ha) (MtDM) (Mt)
CO, co CO, co
Atlantic temperate forest 2315  AGS 0.081 0.052 (£0.010) 0.086 (£0.017) 0.004 (+£0.001) 0.841 (£0.017) 0.155 0.007
BGS 1.546  0.236 (£0.146)  0.252 (£0.156)  0.065 (£0.040)
Atlantic pine forest 26850 AGS 2.351  1.278 (£0.350)  2.111 (£0.559) 0.102 (£0.036) 0.834 (+£0.015) 2914 0.159
BGS 38.121 2.447 (£1.498) 2.856(£1.704) 0.936 (£0.524)
Mediterranean forest 7600  AGS 0332 0.199 (£0.046)  0.330 (£0.074)  0.015(£0.005) 0.957 (£0.003) 0.272 0.014
BGS 0.850
Other forest area 4839  AGS 0.590  0.315(x0.087) 0.519(£0.139)  0.025(x0.009) 0.955(=0.004) 0516 0.024
BGS 0.808
Total 41600 44,680 4.526 (£2.138) 6.154 (£2.650) 1.147 (£0.615) 7.172 (+£0.081) 3.857 0.204

Table 2: Burned area (ha), stock (MtDM), matter combusted (MtDM), CO2 and CO emissions (in Mt), resulting
MCE, and GFAS estimation in France for the 2022 summer fire season and for the four regions.

We ran the fire emission algorithm over France, for the year 2022, when more than 41,600 ha of forest
burned over the national territory, including the temperate forests usually less affected. We estimated
a total of 6.154 Mt.CO, emitted to the atmosphere, and 1.147 Mt.CO (Table 2). That year, 26850ha
affected the Atlantic pine forest, emitting 2.111 Mt.CO; from the combustion of aboveground biomass
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with an additional emission of 2.856 MtCO; from the soil combustion. These 4.96 Mt.CO; calculated
from our new algorithm and including soil combustion, exceeds the 2.9MtCO2 estimated from the
GFAS global model. By providing more detailed biomass estimates at fine resolution and by including
soil smouldering in peatlands and sandy pine forests covering the Southwestern part of the country,
we could reach a valuable tools to be coupled with fire hazard or IFM prescribed burning plans and
assess their carbon emissions.
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2.3 Fire hazard modelling (UREAD, IMPERIAL, IRD-CEFE)

Recent wildfire seasons across Europe have highlighted the need for adaptive and future-proof wildfire
management strategies. Such strategies are generally developed at regional scales, but effective
adaptation must consider future changes in wildfire regimes, which rely on modelling tools. As a model
benchmarking exercise in FIRE-ADAPT, we compare the performance of a globally trained model of
burnt area and a model trained over France. We consider the influence of climate, vegetation
productivity, land cover, and human activity on current wildfire activity. Both models are constructed
using an identical predictor set and methodology, but the spatial extent and resolution of the training
data differ. We show that whilst both models have similar performance when compared to the recent
observational record, their underlying relationships differ. Our findings imply that globally trained
models will capture future trends more robustly since they sample a wider range of climate and
environmental conditions and thus will provide a more secure basis for designing realistic mitigation
strategies. As the model inputs include climate associated with land cover composition and
fragmentation with road density, this modelling exercise initiated the fire-vegetation model
benchmarking to be further used under future climate scenarios and with contrasted IFM strategies
affecting vegetation cover (Forest management strategy) and landscape fragmentation for impact
assessment.

2.3.1 Description of the global model

The original global model of burnt area (BA) was constructed using 16 predictors representing climate,
vegetation properties, landscape fragmentation and ignitions (Table 1) at 0.5°x 0.5° resolution and
trained on a 6-year seasonal climatology from 2010 to 2015 (Haas et al.,, 2022). Climate was
represented by vapour pressure deficit (VPD) and diurnal temperature range (DTR), number of dry
days (DD) and wind speed (wind), specifically the maximum monthly value VPD and DTR over the
seasonal climatology, the maximum value in the hottest month for wind, and the mean value over the
seasonal climatology for DD. An additional measure to represent the seasonality of DD was derived by
dividing the range of the monthly values by the mean value. Vegetation properties were represented
by gross primary production (GPP) and grass, shrub, and tree cover, where GPP was represented as
the sum of monthly GPP, GPP seasonality was calculated in the same way as DD seasonality, and the
grass, shrub, and tree cover variables were the mean of the annual values over the training period.
Landscape fragmentation due to topographic factors was represented by the vector ruggedness
measure (VRM) and topographic position index (TPIl) and due to human activities by road density,
population density and crop cover. There was only a single value for road density, while population
density and crop cover were represented as the mean annual value over the training period. Natural
ignitions by lightning were represented by the mean value over the seasonal climatology.

For this analysis, the model was refitted using a longer baseline period (2006-2021) to maximise
sample size while ensuring that both the high-resolution data for France and the lower-resolution
global data were both available. Global Burned Area (BA) data were derived from monthly mean
fractional BA from the Global Fire Emissions Database (GFED4v4; Randerson et al., 2018). Global
climate data was obtained from the ERA5 dataset (Hersbach et al., 2020). Mean monthly GPP was
obtained from monthly outputs of the P-model (Stocker et al 2020), a first-principles model of GPP
that was run globally using inputs from the ERA5 dataset (Hersbach et al, 2020) and leaf area index
from GIMMS3g. Global fractional annual tree, shrub and grass cover were obtained from the European
Space Agency (ESA) Climate Change Initiative (CCl) Land Cover dataset (Li et al., 2018). Global annual
values of population density and fractional annual cropland cover were taken from version 3.2 of the
HistorY Database of the global Environment (HYDE 3.2: Klein Goldewijk et al 2017) database. Global
road density was obtained from the Global Roads Inventory Project (GRIP) database (Meijer et al 2018).
Global mean monthly lightning ground-strike density, representing potential natural ignitions, was
obtained from the worldwide lightning location network (WWLLN) Global Lightning Climatology
(WGLC) dataset (Kaplan and Lau, 2021). The two landscape topographic indices, VRM and TPl were
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obtained from the global 250 m GMTED2010 and near-global 90 m SRTM4.1dev dataset (Amatulli et

al 2018).

Data source

dry days (Log-
transformed)

al, 2020)

Predictors Global model | France model
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Mean monthly number of | ERA5 (Hersbach et | ERA5-Land
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number of dry days
(unitless, log-transformed)

ERA5 (Hersbach et
al, 2020)

ERA5-Land

(Munoz Sabater et
al. 2021)

Maximum mean monthly
vapour pressure deficit
(Pa, log-tranformed)

ERA5 (Hersbach et
al, 2020)

ERA5-Land

(Munoz Sabater et
al. 2021)

Maximum mean monthly
diurnal temperature range
(°C, log-transformed)

ERA5 (Hersbach et
al, 2020)

ERA5-Land

(Munoz Sabater et
al. 2021)

Mean wind speed of the
hottest month (m s-1, log-
transformed)

ERA5 (Hersbach et
al, 2020)

ERA5-Land

(Munoz Sabater et
al. 2021)

Vegetation, land cover and |

andscape fragmentation

Annual gross primary
production (g C m-2 a -1,
log-transformed)

P-model (Stocker et
al 2020) GIMMS3g
LAI

P-model (Stocker
etal 2020) SNU LAl

Gross primary production
seasonality (unitless, log-
transformed)

P-model (Stocker et
al 2020) GIMMS3g
LAI

P-model (Stocker
etal 2020) SNU LAl

Fractional shrubland cover

ESA CCI Landcover

Dou et al. 2021

Fractional grassland cover

ESA CCI Landcover

Dou et al. 2021

Fractional tree cover

ESA CCI Landcover

Dou et al. 2021

Fractional crop cover

HYDE 3.2 (Klein
Goldewijk et al 2017)

Dou et al. 2021

Road density (km-2,
square-root transform)

GRIP (Meijer et al
2018)

BD TOPO dataset
(BD___TOPO® |
Géoservices)

Vector
measure

ruggedness

Amatulli et al 2018

(Amatullietal 2018)

Topographic position index

Amatulli et al 2018

(Amatullietal 2018)
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Ignition sources

Population density (km-2, | HYDE 3.2 (Klein | INSEE (2024)
square-root transform) Goldewijk et al 2017)

Mean monthly lightning | WGLC WWLLN | WGLC WWLLN
ground-strikes (km-2, | (Kaplan et al 2021) (Kaplan et al 2021)

square-root transform) reprojected

Fire data

Monthly mean BA | GFEDv4 (Randerson | BDIFF, Institut

(fraction) et al 2018) national de
l'information

géographique et
forestiére (IGN)
(2025)

Table 3. Summary of predictor and fire variables for model training and future projections

A local model for France metropolitan area was constructed using the same predictor set and 16-year
seasonal climatology as the global model but was trained at 0.1°x 0.1° resolution. BA data for France
was derived from the national forest fire inventory (Base de Données sur les Incendies de Foréts
en France; BDIFF, https://bdiff.agriculture.gouv.fr/), which references all fires that have occurred since
2006. Individual fire sizes of over 10 ha were summed within each 0.1° grid cell for each month from
January 2006 to December 2021. Monthly climate data for France was obtained from the ERA5-Land
dataset (Munoz Sabater et al. 2021). Mean monthly GPP was obtained from monthly outputs of the P-
model (Stocker et al 2020) forced by climate data from ERA5-Land and Seoul National University (SNU)
LAl data. Grass, shrub and tree cover data were obtained from 1km resolution land cover map of Dou
et al. (2021), aggregating CORINE Land cover and the Pan-European high resolution thematic map from
the European environmental agency, refining land cover classes with intensity levels into grasslands,
shrublands, forests and urban characterisation with enhanced water/ice bodies. Road density was
obtained from the BD TOPO dataset (BD TOPO® | Géoservices) and aggregated to a 0.1° resolution.
There is no independent lightning data for France, so these data were obtained from the same dataset
as the global model, cropped to France and resampled using bilinear interpolation to 0.1° resolution.
VRM and TPl were also obtained from the global dataset (Amatulli et al 2018) at 0.1° resolution.

2.3.2 Results

The global model had a pseudo-R2of 0.67 and fifteen of the sixteen predictor variables were significant
(Table 2). The local model had a pseudo-R? of 0.38 (Table 2), but only six of the sixteen variables were
significant (GPP, GPP seasonality, crop cover, DD and DD seasonality and VPD). Both the global and the
local models reproduced the spatial pattern of BA over France, and both models identified regions of
higher fire activity. However, the global model overestimated the spatial extent of BA, whereas the
local model underestimated BA (Figure 8). The annual BA in BDIFF from 2006-2021 ranges from 27 km?
to 593 km? with a climatological annual average of 123 km?2. Overall, the global model predicted a
climatological average of 415 km? (range of 255 to 700 km?), compared to a climatological average of
24 km? (range of 9 to 64 km?) for the France model. The global model outperformed the local model
in terms of seasonal variability but not interannual variability, although both models failed to
reproduce the absolute trends (see Table 4). The global model was able to capture the positive trend
in observed in the BDIFF BA record from 2006 to 2022 (slope=0.23), though it underestimated its
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strength (slope=0.04). The France model did not capture this trend because inter-annual variability
was too large.

BA in the global model was primarily driven by fuel availability and fuel dryness, with the most
important driving variables being GPP, fractional grassland cover, DD and VPD (Table 4). However, BA
was primarily driven by fuel dryness in the France model. The fitted relationships with the climate
variables had the same sign as in the global model, although only DD, DD seasonality and VPD were
significant. However, BA was constrained by fuel availability in the France model, and the fitted
relationships between the vegetation variables and BA had opposite signs to those fitted in the global
model. Both GPP and GPP seasonality had a significant positive relationship with BA in the global model
but a negative relationship in the France model. Conversely, fractional tree cover had a negative
relationship in the global model and a positive relationship in the France model. Variables representing
human impact (cropland cover, road density and population density) were significant in the global
model. Cropland area had a significant relationship with BA in the France model, but population
density and road density showed no significant relationships to BA (Table 4).

Predictors Global model Local model
Coefficient t-value | VIF Coefficient | t-value | VIF

(intercept)

-26.85%** -113.58 -39.03*** -6.88
Gross primary production (g Cm=2a1) 2.87 2.23
1.79%** 64.66 -1.10** -3.15
Seasonality of gross primary production 2.19 2.29
0.63*** 43.16 -1.35* -2.46
Fractional tree cover 2.61 2.17
-0.78*** -17.42 0.70 1.11
Fractional shrubland cover 0.54*** 10.47 1.77
Fractional grassland cover 1.51 1.86
1.34%%** 25.14 0.04 0.05
Road density (km=2) 1.67 2.85
-0.05*** -37.4 0.01 0.58
Fractional cropland cover 2.10 2.90
-1.65%** -21.48 -1.98*** -3.62
Vector Ruggedness Measure 1.45 2.56
-123.05%** -14.66 14.63 0.51
Topographic Position Index 1.29 1.33
0.40%** 17.55 0.13 1.76
Mean monthly number of dry days 3.17 5.60
0.80*** 40.2 10.67*** 5.27
Seasonality of monthly number of dry 3.15 1.80
1.07*** 55.23 1.55%** 3.93

days
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Maximum mean monthly vapour " 2.75 . 4.65
pressure deficit (Pa) 0.84 47.18 1.39 2.42
Maximum mean monthly diurnal 1.92 1.98
temperature range (C°) 0.05 1.37 -0.84  -1.53
Mean wind speed of the hottest month 1.66 3.31
(m s 0.27*** 14.43 -0.26 -0.51
Mean monthly lightning ground-strikes 1.72 3.03
(km™2) 8.26%** 26.26 12.57 1.21
Population density (km™) 1.89

0.01 6.79 -0.01 -0.62
R?(McFadden, 1974) 0.66 0.38
Spatial (NME step 3) 1.22 0.87
Interannual variability (NME step 1, 65.21, 16.98 2.36,0.92
step2)
Seasonal (NME stepl, step 2) 2.21,0.98 20.00, 10.90
Sample size 62,495 6,208

2.66

Table 4. Summary of the global model and the local model showing GLM predictor coefficients, t-values and
variance inflation factors (VIF)

Differences in the fitted relationships between the predictor variables and BA in the two models reflect
the difference in sample size, and in the range and distribution of the training datasets used. The
sample size of the training dataset for the global model (62,495 data points) is over eight times larger
than the training dataset used to fit the France model (6,208 data points). As a result, the correlations
between BA and the predictor variables are generally stronger in the global model. Only DD has a
similar and significant correlation strength in the global and France models (0.12 and 0.10,
respectively). Cropland cover and road density have similar correlations, but these were < 0.05. The
differences in the size of the training datasets also mean that the France model is trained on a limited
part of the global range of each predictor variable, which appears to explain the differences in the
fitted relationships between the two models. GPP has an emergent humped relationship with BA.
Maximum BA occurs when annual GPP is ~1,800 gCyr? in the global model and declines thereafter.
Annual GPP values over France fall within the top 50 percentile of the global distribution, but do not
exceed 2,000 gCyr? and thus the range of values the model is trained on is concentrated and truncated.
A similar situation occurs for DD, where the variance in the distribution globally is relatively large with
a 25t™ percentile value of 10 days, a median value of 15 days and a 75t percentile value of 22 days.
There is very little variation in dry days over France until the 75" percentile (18 days), with a sharp
jump thereafter (+ 5 days), representing the steep aridity gradient over the country. This leads to a
much steeper fitted relationship between DD and BA over France than is observed globally (see Figure
9).
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(a) BDIFF

(b) Global model

(c) France model
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Figure 8. Observed annual mean of BA from (a) the BDIFF, (b) the globally trained model and (c) the locally
trained GLM model
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Figure 9. Partial residual plots (and coefficients) of the global and France model for gross primary
production (GPP) and dry days (DD) with the dotted line representing the median value globally. Both
GPP and DD have emergent humped relationships with BA globally.
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3 Conclusions

This document provided a description of model developments and benchmarking phases within FIRE-
ADAPT, using FIRE-ADAPT data acquisition from D4.1 and D4.2, and to be further used in D4.4 for
climate and management scenarios. We targeted here fire hazard modelling through plant water
status as a key driver of fire spread and ignition, a burned area modelling integrating landcover, fuel
production and human aspects and a fire impact model on carbon budget. Source codes will be made
available for FIRE-ADAPT partners and applications across Study Hubs. We provided advances in
modelling perspectives regarding i) fire weather indices applicable at the landscape scale by integrating
solar radiation in drought codes, ii) ecophysiological processes of leaf phenology in the driving seasonal
time course of LFMC, iii) fire hazard modelling benchmarked over large ranges of climates to cover
future scenarios outside of the current observations and iv) fire impacts on ecosystem carbon losses
and emissions. Landscape-scale fire weather indices can be used for local managers to plan fuel
treatments and landscape mosaicking in highly hazardous locations, including species selection with
less flammable functional traits, completed by land cover and land fragmentation thresholds to be
reached and mitigate climate impacts on increasing fire-prone weather. Finally, carbon assessment
tools provide exhaustive quantification of carbon losses contributing to the social acceptance of IFM
as prescribed burning, from scientifically sound quantitative estimates. Novel datasets and new model
developments have been provided and benchmarked on study cases in FIRE-ADAPT Study Hubs,
benefiting from FIRE-ADAPT secondments across institutes as IRD, University of Reading (UREAD) and
Imperial College (IMPERIAL).
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